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Abstract: We have calculated the explicit form of the real and imaginary parts of the

effective potential for uniform magnetic fields which interact with spin-1/2 fermions through

the Pauli interaction. It is found that the non-vanishing imaginary part develops for a

magnetic field stronger than a critical field, whose strength is the ratio of the fermion

mass to its magnetic moment. This implies the instability of the uniform magnetic field

beyond the critical field strength to produce fermion pairs with the production rate density

w(x) = m4

24π
( |µB|

m
− 1)3( |µB|

m
+ 3)θ( |µB|

m
− 1) in the presence of Pauli interaction.
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1. Introduction

The interaction of charged spin-1/2 fermions with electromagnetic fields is described by

the minimal coupling in the form of the Dirac equation. One of the interesting phenomena

with strong electromagnetic fields is the particle production. A well known example is

the Schwinger process, in which minimally interacting charged particles are created in

pairs in strong electric fields [1, 2]. In a pure magnetic field configuration, however, it

has been shown that the production of minimally interacting fermion is not possible even

with a spatial inhomogeneity [3]. Therefore, the pair production of minimally interacting

particles is considered to be a purely electric effect.

Pauli introduced a non-minimal coupling of spin-1/2 particles with electromagnetic

fields, which can be interpreted as an effective interaction of fermions with an anomalous

magnetic moment [4 – 6]. For the neutral fermions with non-vanishing magnetic moments,

it is the Pauli interaction through which the electromagnetic interaction can be probed. It

is interesting to note that the inhomogeneity of the magnetic field, which couples directly to

the magnetic dipole moment through the Pauli interaction, plays a similar role analogous

to the electric field for a charged particles with the minimal coupling. The possibility

of production of the neutral fermions in a pure magnetic field configuration with spatial

inhomogeneity has been demonstrated in 2+1 dimension [7], and recently the production

rate in 3+1 dimension has been calculated explicitly for the magnetic fields with a spatial

inhomogeneity of a critical value [8].

The purpose of this paper is to discuss further the possibility of the fermion production

under a uniform magnetic field when it becomes stronger than the critical field whose

strength is the ratio of the fermion mass to its magnetic moment. We consider a neutral

fermion but with a magnetic moment µ with Pauli interaction. The energy eigenvalues of

the fermion [9] are given by

E = ±

√

p2
l +

(

√

m2 + p2
t − |µB|ŝ

)2

, (1.1)
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where pl and pt are respectively the longitudinal and the transversal momentum to the

magnetic field direction, and ŝ = ±1 are spin projections along the magnetic field. One

can see that, for a critical magnetic field Bc = m
µ

, the energy gap between the positive and

the negative energy states disappears. This indicates the possible instability of magnetic

field configurations even in uniform magnetic fields. The generic feature of the instability

due to the level crossing of the lowest energy state is the appearance of an imaginary part

in the effective potential for the background field [10, 11]. We have calculated the effective

potential of uniform magnetic fields which interact with spin-1/2 fermions through the Pauli

interaction. For a magnetic field weaker than the critical field, we obtain the real effective

potential as expected. However, for a magnetic field stronger than the critical field, it is

found that the imaginary part of the effective potential does not vanish. This implies that

a uniform magnetic field becomes unstable to produce the fermion pairs in vacuum when

it is stronger than the critical field. It should be noted that the pair production in uniform

magnetic fields is not due to the tunnelling process as in Schwinger process overcoming the

energy gap, 2m, but due to the disappearance of the energy gap in eq. (1.1) for the critical

field strength. The difference is also manifested in different functional forms of the pair

production rates. It is found that the production rate takes a quartic form which is quite

different from the exponential form of the Schwinger process.

The calculation of the effective potential for uniform magnetic fields induced by a

neutral fermion, which is assumed to be interacting with the background electromagnetic

field through the Pauli coupling, is discussed in section II and the results are summarized

in section III.

2. Effective potential for uniform magnetic fields induced by fermions with

Pauli interaction

The Dirac Lagrangian of a neutral fermion with the Pauli interaction is given by

L = ψ̄
(

p/ +
µ

2
σµνFµν − m

)

ψ, (2.1)

where σµν = i
2 [γµ, γν ], gµν = (+,−,−,−). µ in the Pauli term measures the magnitude

of the magnetic moment of the neutral fermion. The corresponding Hamiltonian is given

by

H = ~α · (~p − iµβ ~E) + β(m − µ~σ · ~B), (2.2)

where σi = 1
2εijkσjk. The energy eigenvalues eq. (1.1) of the Hamiltonian eq. (2.2) are

obtained diagonalizing the 4 × 4 Pauli Hamiltonian for a constant ~B with ~E = 0. One

can see that, for a magnetic field stronger than the critical field Bc = m
µ

, the energy gap

between the positive and the negative energy states disappears. This indicates the possible

instability of magnetic field configuration.

On the other hand, the energy eigenvalues of minimally interacting charged fermions

without an anomalous magnetic moment are

E = ±
√

p2
l + m2 + |eB|(2n + 1 − sgn(e)ŝ), (2.3)
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where n = 0, 1, 2, . . . [12]. It should be pointed out that zero energy states do not exist even

for a strong magnetic field, and no particle production of minimally interacting fermions

in pure magnetic fields can be attributed to this finite energy gap. It is also interesting

to note that the energy eigenvalues for a uniform color-magnetic field B configuration in a

pure Yang-Mills theory are given by

E = ±
√

p2
l + |gB|(2n + 1 − 2ŝ), (2.4)

where the factor 2 in front of ŝ is due to the spin S = 1 of the gauge fields. One can see

that eq. (2.4) shows a level crossing for the state with n = 0 and ŝ = +1. In fact, the

instability of the uniform color-magnetic field configuration due to the level crossing has

been discussed by Nielsen and Olesen [11] in detail, where a pure Yang-Mills theory is shown

to be unstable for a massless non-uniform field excitation known as Nielsen-Olesen mode

and they found the non-vanishing imaginary part of the corresponding effective potential

in a quadratic form of the fields.

The effective potential Veff(A) for a background electromagnetic vector potential Aµ

can be obtained by integrating out the fermions:

−i

∫

d4xVeff(A[x]) =

∫

d4x

〈

x

∣

∣

∣

∣

tr ln

[

(

p/ +
µ

2
σµνFµν − m

) 1

p/ − m

]
∣

∣

∣

∣

x

〉

, (2.5)

where Fµν = ∂µAν − ∂νAµ, and tr denotes the trace over Dirac algebra. The decay

probability of the background magnetic field into the neutral fermions is related to the

imaginary part of the effective potential Veff(A),

P = 1 − |ei
R

d4xVeff (A[x])|2 = 1 − e−2=
R

d3xdtVeff (A[x]). (2.6)

That is, the twice of the imaginary part of the effective potential Veff(A[x]) is the fermion

production rate per unit volume [13]: w(x) = 2=(Veff(A[x])) for small probabilities.

For a uniform magnetic field configuration, ~B = Bẑ, the integral form of the effective

potential eq. (2.5) is obtained as [8]

Veff = −
(µB)2

4π2

∫ ∞

0

ds

s2

[

i

∫ 1

0
dξ(1 − ξ)ei(µB)2ξ2s −

i

2
+

(µB)2s

12

]

e−im2s. (2.7)

The integration eq. (2.7) can be done explicitly. Introducing dimensionless parameters,

t = m2s and β = |µB|
m

, the imaginary part of the effective potential eq. (2.7) can be written

as

=(Veff) = −
m4β2

4π2

∫ 1

0
dξ(1 − ξ)

∫ ∞

0

dt

t2
[

cos(β2ξ2 − 1)t − cos(t) − β2ξ2t sin(t)
]

= −
m4β2

8π

∫ 1

0
dξ(1 − ξ)[1 − β2ξ2 − |1 − β2ξ2|]. (2.8)

For a magnetic field weaker than the critical field, β ≤ 1, the integration eq. (2.8)

vanishes. It can be also verified by a contour integration. For the magnetic fields weaker

than the critical field Bc = m/µ, using a contour integration in the fourth quadrant, the
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Figure 1: Effective potential of the uniform magnetic field B induced by neutral fermions with a

magnetic moment: vertical axis is Veff in the unit of m
4

48π
2 (the solid line is for the imaginary part

and the dashed line is for the real part), horizontal axis is β(= |µB|/m).

integration can be done along the negative imaginary axis giving the finite real effective

action as

Veff = −
(µB)2

4π2

∫ ∞

0

ds

s2

[

1

2
+

(µB)2s

12
−

∫ 1

0
dξ(1 − ξ)e(µB)2ξ2s

]

e−m2s. (2.9)

Therefore, one can see that the uniform magnetic fields weaker than the critical field are

stable as expected.

However, for a magnetic field stronger than the critical field, β > 1, the imaginary

part of the effective potential does not vanish, but takes a quartic form:

=(Veff) =
1

48π
(|µB| − m)3(|µB| + 3m)θ(|µB| − m). (2.10)

This result shows that the uniform magnetic fields stronger than the critical field, Bc =

m/µ, are unstable and reduce the field strengths by producing the fermion pairs with the

rate, w(x) = 2=(Veff ).

The real part of the effective potential eq. (2.7) can be calculated explicitly as well,

<(Veff) = −
m4β2

4π2

∫ 1

0
dξ(1 − ξ)

∫ ∞

0

dt

t2
[

sin(1 − β2ξ2)t − sin(t) + β2ξ2t cos(t)
]

(2.11)

=

{

m4

288π2 [13β4 − 78β2 + 96β tanh−1(β) − 6(β4 − 6β2 − 3) ln(1 − β2)], for β ≤ 1
m4

288π2 [13β4 − 78β2 + 96β coth−1(β) − 6(β4 − 6β2 − 3) ln(β2 − 1)], for β ≥ 1.

For a weak field, β ¿ 1, eq. (2.11) approximates to (µB)6

240π2m2 , and for the critical field, β = 1,

<(Veff) = (96 ln 2 − 65) m4

288π2 . The real and imaginary parts of the effective potential with

respect to the magnetic field strength are shown in FIG.1 in the unit of m4

48π2 .
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So far, we have considered only the neutral fermions with a magnetic dipole moment.

It is also interesting to see how the instability due to the Pauli interaction is affected when

the minimal coupling is turned on in addition to the Pauli interaction. Let us consider an

effective Lagrangian, which might describe a fermion endowed with a non-vanishing electric

charge e and as well as with a magnetic dipole moment µ, given by

L = ψ̄(p/ − eA/ +
µ

2
σµνFµν − m)ψ. (2.12)

In this work, we consider a model in which the electric charge e and the magnetic dipole

moment µ are two independent couplings such that the Pauli term description of the

magnetic moment is valid up to the critical magnetic field.1 Then the effective potential

for a fermion described by eq. (2.12) is calculated as [17]

Veff = −
1

8π2

∫ ∞

0

ds

s2

[

|eB| coth(|eB|s) −
1

s
−

(eB)2s

3

]

e−m2s (2.13)

−
(µB)2

4π2

∫ ∞

0

ds

s2

[

i|eB|s cot(|eB|s)

∫ 1

0
dξ(1 − ξ)ei(µB)2ξ2s −

i

2
+

(µB)2s

12

]

e−im2s,

where the first integral is the well-known effective potential for a minimally interacting

charged fermion in a uniform magnetic field [3], and the second integral is the contribution

from the magnetic moment µ.

For a magnetic field weaker than the critical field Bc = m/µ, the s integration of the

second integral can be performed along the negative imaginary axis in the fourth quadrant.

Thus, the effective potential eq. (2.13) can be written as

Veff = −
1

8π2

∫ ∞

0

ds

s2

[

|eB| coth(|eB|s) −
1

s
−

(eB)2s

3

]

e−m2s (2.14)

−
(µB)2

4π2

∫ ∞

0

ds

s2

[

1

2
+

(µB)2s

12
− |eB| coth(|eB|s)

∫ 1

0
dξ(1 − ξ)e(µB)2ξ2s

]

e−m2s,

which is real as expected. For a small µ, expanding this exact effective potential eq. (2.14)

in terms of µ, the leading contribution is given by

Veff
∼= −

1

8π2

∫ ∞

0

ds

s2

[

|eB| coth(|eB|s) −
1

s
−

(eB)2s

3

]

e−m2s (2.15)

+
(µB)2

8π2

∫ ∞

0

ds

s2
[|eB| coth(|eB|s) − 1]e−m2s, for

∣

∣

∣

∣

µB

m

∣

∣

∣

∣

¿ 1,

which is equivalent to the perturbative result calculated up to the leading order of µ with

µ = µa in [15]. However, it should be noted that eq. (2.15) can not be applicable for strong

magnetic fields, for which |µB
m

| ¿ 1 is not valid.

1In [14, 15], µ was identified as the Schwinger’s anomalous magnetic moment µa = α

2π

e

2m
. However,

the calculations of the 1-loop QED radiative corrections for strong magnetic fields [16] show that the Pauli

interaction of anomalous magnetic moment µa is only valid for weak field limit, but not for magnetic fields

stronger than m2/e which is much weaker than the critical field,Bc = m/µa.
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For a magnetic field stronger than the critical field, isolating singularities at s = 0 in

the second integral of eq. (2.13), we can rewrite the effective potential as

Veff = −
1

8π2

∫ ∞

0

ds

s2

[

|eB| coth(|eB|s) −
1

s
−

(eB)2s

3

]

e−m2s

−
(µB)2

4π2

∫ ∞

0

ds

s2

[

i

∫ 1

0
dξ(1 − ξ)ei(µB)2ξ2s −

i

2
+

(µB)2s

12

]

e−im2s

+
(µB)2

4π2

∫ ∞

0

ds

s2
{|eB|s coth(|eB|s) − 1}

[
∫ ξ0

0
dξ(1 − ξ)e−(m2−(µB)2ξ2)s −

∫ 1

ξ0

dξ(1 − ξ)e−((µB)2ξ2−m2)s

]

, (2.16)

and ξ0 ≡ | m
µB

| < 1. In eq. (2.16), the first integral is known to be real, and it is straight-

forward to verify that the third integral is real. The second integral in eq. (2.16) is exactly

the effective potential eq. (2.7) obtained for neutral fermions with the Pauli interaction. It

shows that for a fermion described by eq. (2.12) the imaginary part of the effective potential

comes only from the contributions of the magnetic moment through Pauli interaction and

the instability for B ≥ Bc is not affected by the electric charge with the minimal coupling.

Therefore, regardless of whether the fermion is charged or neutral, the fermion carry-

ing a magnetic moment which interacts with Pauli term causes the instability of uniform

magnetic field configuration when the field strength is larger than the critical value, which

is determined by the ratio of the fermion mass to the anomalous magnetic moment.

3. Discussion

For charged fermions, which couple to the electromagnetic field through the minimal cou-

pling, it has been well known that the pair creation is not possible in pure magnetic field

configurations [1, 3, 12]. In this work, we discuss the possibility that particles can be

created in a strong enough magnetic field as a purely magnetic effect. Introducing the

magnetic moment of neutral spin-1/2 fermions through the Pauli interaction, it has been

shown that the production of neutral fermions is possible in a pure magnetic field configu-

ration provided that the gradient of the magnetic field is extremely strong [7, 8]. However,

the particle production in uniform magnetic fields has not yet been addressed properly.

We calculate explicitly the real and imaginary part of the effective potential for a uniform

magnetic field, by integrating out the fermions with a magnetic moment which couples

to the magnetic fields through the Pauli interaction. We have shown explicitly that the

imaginary part of the effective potential develops when the uniform magnetic fields are

stronger than the critical field Bc = m
µ

. Hence the magnetic field background stronger

than Bc is unstable to produce the fermion pairs. We have calculated the production rate

density w of the fermions as w = m4

24π
( |µB|

m
− 1)3( |µB|

m
+ 3)θ( |µB|

m
− 1). One can note that

this result is quite different from the exponential form of the Schwinger process. The main

reason for this difference is that the pair production in uniform magnetic fields is not due

to the tunnelling process as in the Schwinger process overcoming the energy gap 2m, but

due to the disappearance of the energy gap.

– 6 –
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One of the immediate application of the particle production mechanism discussed in

this work might be a particle creation in the vicinity of the compact objects in the strong

explosive astrophysical phenomena, where the extraordinarily strong magnetic fields (>

1015G) are expected and the environment is considered to be magnetically dominant. Of

course it depends on whether there is any physical model in which the neutral fermion

considered is described by Pauli interaction up to the critical magnetic fields.

This work was supported by grant No. (R01-2006-000-10651-0) from the Basic Re-

search Program of the Korea Science & Engineering Foundation.
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